

Welcome to sandman’s documentation!

Contents:

	Installation

	Using Sandman
	The Simplest Application

	Supported Databases

	Beyond sandmanctl

	Creating Models
	Hooking up Models

	Providing a custom endpoint

	Restricting allowable methods on a resource

	Performing custom validation on a resource

	Configuring a model’s behavior in the admin interface

	Model Endpoints
	The root endpoint

	The /meta endpoint

	Automatic Introspection

	Running sandman alongside another app
	Using existing declarative models

	The sandman Admin Interface
	Activating the sandman Admin Interface

	Getting Richer Information for Related Objects

	Authentication
	Enabling Authentication

	Token-based Authentication

	sandman API
	exception Module

	model Module

	sandman Module

Indices and tables

	Index

	Module Index

	Search Page

Installation

Simply run:

pip install sandman

Using Sandman

The Simplest Application

Here’s what’s required to create a RESTful API service from an existing database using
sandman

$ sandmanctl sqlite:////tmp/my_database.db

That’s it. sandman will then do the following:

	Connect to your database and introspect it’s contents

	Create and launch a RESTful API service

	Create an HTML admin interface

	Open your browser to the admin interface

That’s right. Given a legacy database, sandman not only gives you a REST API,
it gives you a beautiful admin page and opens your browser to the admin page.
It truly does everything for you.

Supported Databases

sandman , by default, supports connections to the same set of databases as
SQLAlchemy (http://www.sqlalchemy.org). As of this writing, that includes:

	MySQL (MariaDB)

	PostgreSQL

	SQLite

	Oracle

	Microsoft SQL Server

	Firebird

	Drizzle

	Sybase

	IBM DB2

	SAP Sybase SQL Anywhere

	MonetDB

Beyond sandmanctl

sandmanctl is really just a simple wrapper around the following:

from ``sandman`` import app

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///chinook'

from sandman.model import activate

activate(browser=True)

app.run()

Notice you don’t even need to tell ``sandman`` what tables your database contains.
Just point sandman at your database and let it do all the heavy lifting.

If you put the code above into a file named runserver.py, You can start this new
service and make a request. While we’re at it, lets make use
of sandman’s awesome filtering capability by specifying a filter term:

$ python runserver.py &
* Running on http://127.0.0.1:5000/

> curl GET "http://localhost:5000/artists?Name=AC/DC"

you should see the following:

{
 "resources": [
 {
 "ArtistId": 1,
 "Name": "AC/DC",
 "links": [
 {
 "rel": "self",
 "uri": "/artists/1"
 }
]
 }
]
}

If you were to leave off the filtering term, you would get all results from
the Artist table. You can also paginate these results by specifying ?page=2
or something similar. The number of results returned per page is controlled by
the config value RESULTS_PER_PAGE, which defaults to 20.

A Quick Guide to REST APIs

Before we get into more complicated examples, we should discuss some
REST API basics. The most important concept is that of a resource.
Resources are sources of information, and the API is an interface to this information.
That is, resources are the actual “objects” manipulated by the API. In sandman, each
row in a database table is considered a resource.

Groups of resources are called collections. In sandman, each table in your
database is a collection. Collections can be queried and added to using the
appropriate HTTP method. sandman supports the following HTTP methods:

* GET
* POST
* PUT
* DELETE
* PATCH

(Support for the HEAD and OPTIONS methods is underway.)

Creating Models

A Model represents a table in your database. You control which tables to
expose in the API through the creation of classes which inherit from
sandman.model.models.Model. If you create a Model, the only attribute you
must define in your class is the __tablename__ attribute. sandman uses this to map your
class to the corresponding database table. From there, sandman is able to divine
all other properties of your tables. Specifically, sandman creates the
following:

	an __endpoint__ attribute that controls resource URIs for the class

	a __methods__ attribute that determines the allowed HTTP methods for the class

	as_dict and from_dict methods that only operate on class attributes
that correspond to database columns

	an update method that updates only the values specified (as opposed to
from_dict, which replaces all of the object’s values with those passed in
the dictionary parameter

	links, primary_key, and resource_uri methods that provide access
to various attributes of the object derived from the underlying database model

Creating a models.py file allows you to get even more out of sandman. In the file,
create a class that derives from sandman.models.Model for each table you want to
turn into a RESTful resource. Here’s a simple example using the Chinook test database
(widely available online):

from sandman.model import register, activate, Model

class Artist(Model):
 __tablename__ = 'Artist'

class Album(Model):
 __tablename__ = 'Album'

class Playlist(Model):
 __tablename__ = 'Playlist'

class Genre(Model):
 __tablename__ = 'Genre'

register can be called with an iterable or a single class
register((Artist, Album, Playlist))
register(Genre)
activate must be called *after* register
activate(browser=False)

Hooking up Models

The __tablename__ attribute is used to tell sandman which database table
this class is modeling. It has no default and is required for all classes.

Providing a custom endpoint

In the code above, we created four sandman.model.models.Model classes that
correspond to tables in our database. If we wanted to change the HTTP endpoint for
one of the models (the default endpoint is simply the class’s name pluralized in lowercase),
we would do so by setting the __endpoint__ attribute in the definition of the class:

class Genre(Model):
 __tablename__ = 'Genre'
 __endpoint__ = 'styles'

Now we would point our browser (or curl) to localhost:5000/styles to
retrieve the resources in the Genre table.

Restricting allowable methods on a resource

Many times, we’d like to specify that certain actions can only be carried out
against certain types of resources. If we wanted to prevent API users from
deleting any Genre resources, for example, we could specify this implicitly
by defining the __methods__ attribute and leaving out the DELETE method,
like so:

class Genre(Model):
 __tablename__ = 'Genre'
 __endpoint__ = 'styles'
 __methods__ = ('GET', 'POST', 'PATCH', 'PUT')

For each call into the API, the HTTP method used is validated against the
acceptable methods for that resource.

Performing custom validation on a resource

Specifying which HTTP methods are acceptable gives rather coarse control over
how a user of the API can interact with our resources. For more granular
control, custom a validation function can be specified. To do so, simply define a
static method named validate_<METHOD>, where <METHOD> is the HTTP method
the validation function should validate. To validate the POST method on
Genres, we would define the method validate_POST, like so:

class Genre(Model):
 __tablename__ = 'Genre'
 __endpoint__ = 'styles'
 __methods__ = ('GET', 'POST', 'PATCH', 'PUT')

 @staticmethod
 def validate_POST(self, resource=None):
 if isinstance(resource, list):
 return True

 # No classical music!
 return resource and resource.Name != 'classical'

The validate_POST method is called after the would-be resource is created,
trading a bit of performance for a simpler interface. Instead of needing to
inspect the incoming HTTP request directly, you can make validation decisions
based on the resource itself.

Note that the resource parameter can be either a single resource or a
collection of resources, so it’s usually necessary to check which type you’re
dealing with. This will likely change in a future version of sandman.

Configuring a model’s behavior in the admin interface

sandman uses Flask-Admin to construct the admin interface. While the default
settings for individual models are usually sufficient, you can make changes to the
admin interface for a model by setting the __view__ attribute to a class that derives
from flask.ext.admin.contrib.sqla.ModelView. The Flask-Admin’s documentation should be
consulted for the full list of attributes that can be configured.

Below, we create a model and, additionally, tell sandman that we want the table’s
primary key to be displayed in the admin interface (by default, a table’s primary keys
aren’t shown):

from flask.ext.admin.contrib.sqla import ModelView

class ModelViewShowPK(ModelView):

 column_display_pk = True

class Artist(Model):
 __tablename__ = 'Artist'
 __view__ = ModelViewShowPK

Custom `__view__` classes are a powerful way to customize the admin interface.
Properties exist to control which columns are sortable or searchable, as well
as as what fields are editable in the built-in editing view. If you find your
admin page isn’t working exactly as you’d like, the chances are good you can
add your desired functionality through a custom __view__ class.

Model Endpoints

If you were to create a Model class named Resource, the following endpoints would be created:

	
	resources/

	
	GET: retrieve all resources (i.e. the collection)

	POST: create a new resource

	
	resources/<id>

	
	GET: retrieve a specific resource

	PATCH: update an existing resource

	PUT: create or update a resource with the given ID

	DELETE: delete a specific resource

	
	resources/meta

	
	GET: retrieve a description of a resource’s structure

The root endpoint

For each project, a “root” endpoint (/) is created that gives clients
the information required to interact with your API. The endpoint for each
resource is listed, along with the /meta endpoint describing a resource’s
structure.

The root endpoint is available as both JSON and HTML. The same information is
returned by each version.

The /meta endpoint

A /meta endpoint, which lists the models attributes (i.e. the database
columns) and their type. This can be used to create client code that is
decoupled from the structure of your database.

A /meta endpoint is automatically generated for every Model you register.
This is available both as JSON and HTML.

Automatic Introspection

Of course, you don’t actually need to tell sandman about your tables; it’s
perfectly capable of introspecting all of them. To use introspection to make
all of your database tables available via the admin and REST API, simply
remove all model code and call activate() without ever registering a model.
To stop a browser window from automatically popping up on sandman
initialization, call activate() with browser=False.

Running sandman alongside another app

If you have an existing WSGI application you’d like to run in the same
interpreter as sandman, follow the instructions described here [http://flask.pocoo.org/docs/patterns/appdispatch/#app-dispatch].
Essentially, you need to import both applications in your main file and use
Flask’s DispatcherMiddleware to give a unique route to each app. In the
following example, sandman-related endpoints can be accessed by adding the
/sandman prefix to sandman’s normally generated URIs:

from my_application import app as my_app
from sandman import app as sandman_app
from werkzeug.wsgi import DispatcherMiddleware

application = DispatcherMiddleware(my_app, {
 '/sandman': sandman_app,
 })

This allows both apps to coexist; my_app will be rooted at / and
sandman at /sandman.

Using existing declarative models

If you have a Flask/SQLAlchemy application that already has a number of existing
declarative models, you can register these with sandman as if they were
auto-generated classes. Simply add your existing classes in the call to sandman.model.register()

The sandman Admin Interface

Activating the sandman Admin Interface

sandman supports an admin interface, much like the Django admin
interface. sandman currently uses [Flask-Admin](https://flask-admin.readthedocs.org/en/latest/)
and some SQLAlchemy, erm, alchemy to allow your resources to be
administered via the admin interface. Note, though, that the admin
interface may drastically change in the future.

Here’s a look at the interface generated for the chinook database’s
Track table, listing the information about various music tracks:

[image: _images/admin_tracks.jpg]
Pretty nice! From here you can directly create, edit, and delete resources. In
the “create” and “edit” forms, objects related via foreign key (e.g. a
Track’s associated Album) are auto-populated in a dropdown based on
available values. This ensures that all database constraints are honored when
making changes via the admin.

The admin interface (which adds an /admin endpoint to your
service, accessible via a browser), is enabled by default. To disable it, pass
admin=False as an argument in your call to activate.
By default, calling this function will make _all_ Models accessible in the admin.
If you’d like to prevent this, simply call register() with use_admin=False
for whichever Model/Models you don’t want to appear. Alternatively, you can
control if a model is viewable, editable, creatable, etc in the admin by
setting your class’s __view__ attribute to your own Admin class.

Getting Richer Information for Related Objects

The sharp-eyed among you may have noticed that the information presented for
Album, Genre, and MediaType are not very helpful. By default, the
value that will be shown is the value returned by __str__ on the
associated table. Currently, __str__ simply returns the value of a Model’s
primary_key() attribute. By overriding __str__, however, we can display
more useful information. After making the changes below:

from sandman.model import register, Model

class Track(Model):
 __tablename__ = 'Track'

 def __str__(self):
 return self.Name

class Artist(Model):
 __tablename__ = 'Artist'

 def __str__(self):
 return self.Name

class Album(Model):
 __tablename__ = 'Album'

 def __str__(self):
 return self.Title

class Playlist(Model):
 __tablename__ = 'Playlist'

 def __str__(self):
 return self.Id

class Genre(Model):
 __tablename__ = 'Genre'

 def __str__(self):
 return self.Name

class MediaType(Model):
 __tablename__ = 'MediaType'

 def __str__(self):
 return self.Name

register((Artist, Album, Playlist, Genre, Track, MediaType))

we get much more useful information in the columns mentioned, as you can
see here:

[image: _images/admin_tracks_improved.jpg]

Authentication

sandman supports HTTP basic authentication, meaning a username and password
must be passed on each request via the Authorization header.

Enabling Authentication

Enabling authentication in your sandman installation is a straight-forward task.
You’ll need to define two functions:

	get_password()

	before_request()

The former is required by Flask-HTTPAuth, which powers sandman's
authentication. The latter is used to ensure that _all_ requests are authorized.

get_password

The get_password function takes a username as an argument and should
return the associated password for that user. To notify Flask-HTTPAuth that this
is the function responsible for returning passwords, it must be wrapped with the
@auth.get_password decorator (auth is importable from sandman, e.g.
from sandman import app, db, auth). How you implement your user
management system is up to you; you simply need to implement get_password in
whatever way is most appropriate for your security setup.

As a trivial example, here’s an implementation of get_password that always
returns secret, meaning secret must be the password, regardless of
the username:

@auth.get_password
def get_password(username):
 """Return the password for *username*."""
 return 'secret'

before_request

Once you’ve hooked up your password function, it’s time to tell Flask which
requests should require authentication. Rather than picking and choosing on a
request by request basis, we use the @app.before_request decorator included
in Flask to make sure _all_ requests are authenticated. Here’s a sample
implementation:

@app.before_request
@auth.login_required
def before_request():
 pass

Notice the function just calls pass; it needn’t have any logic, since the
logic is added by Flask-HTTPAuth’s @auth.login_required decorator.

Token-based Authentication

There are plans for sandman to support token-based authentication, but this
currently isn’t supported and no time frame for implementation has been set.

sandman API

exception Module

Exception specifications for Sandman

	
exception sandman.exception.InvalidAPIUsage(code=400, message=None, payload=None)

	Bases: exceptions.Exception

Excecption which generates a flask.Response object whose
data is JSON rather than HTML

	
abort()

	Return an HTML Response representation of the exception.

	
to_dict()

	Return a dictionary representation of the exception.

model Module

The model module is repsonsible exposes the sandman.model.Model class,
from which user models should derive. It also makes the register()
function available, which maps endpoints to their associated classes.

	
sandman.model.register(cls, use_admin=True)

	Register with the API a sandman.model.Model class and
associated endpoint.

	Parameters

	cls (sandman.model.Model or tuple) – User-defined class derived from sandman.model.Model to
be registered with the endpoint returned by endpoint()

	
sandman.model.activate(admin=True, browser=True, name='admin', reflect_all=False)

	Activate each pre-registered model or generate the model classes and
(possibly) register them for the admin.

	Parameters

	
	admin (bool) – should we generate the admin interface?

	browser (bool) – should we open the browser for the user?

	name – name to use for blueprint created by the admin interface. Set
this to avoid naming conflicts with other blueprints (if
trying to use sandman to connect to multiple databases
simultaneously)

The Model class is meant to be the base class for user Models. It represents
a table in the database that should be modeled as a resource.

	
class sandman.model.models.AdminModelViewWithPK(model, session, name=None, category=None, endpoint=None, url=None)

	Bases: flask_admin.contrib.sqla.view.ModelView

Mixin admin view class that displays primary keys on the admin form

	
_default_view = 'index_view'

	

	
_urls = [('/action/', 'action_view', ('POST',)), ('/ajax/lookup/', 'ajax_lookup', ('GET',)), ('/new/', 'create_view', ('GET', 'POST')), ('/delete/', 'delete_view', ('POST',)), ('/edit/', 'edit_view', ('GET', 'POST')), ('/', 'index_view', ('GET',))]

	

	
action_view(*args, **kwargs)

	Mass-model action view.

	
ajax_lookup(*args, **kwargs)

	

	
column_display_pk = True

	

	
create_view(*args, **kwargs)

	Create model view

	
delete_view(*args, **kwargs)

	Delete model view. Only POST method is allowed.

	
edit_view(*args, **kwargs)

	Edit model view

	
index_view(*args, **kwargs)

	List view

	
class sandman.model.models.Model

	Bases: object

A mixin class containing the majority of the RESTful API functionality.

sandman.model.Model is the base class of :class:`sandman.Model,
from which user models are derived.

	
__endpoint__ = None

	override __endpoint__ if you wish to configure the
sandman.model.Model’s endpoint.

Default: __tablename__ in lowercase and pluralized

	
__methods__ = ('GET', 'POST', 'PATCH', 'DELETE', 'PUT')

	override __methods__ if you wish to change the HTTP methods
this sandman.model.Model supports.

Default: ('GET', 'POST', 'PATCH', 'DELETE', 'PUT')

	
__table__ = None

	Will be populated by SQLAlchemy with the table’s meta-information.

	
__tablename__ = None

	The name of the database table this class should be mapped to

Default: None

	
as_dict(depth=0)

	Return a dictionary containing only the attributes which map to
an instance’s database columns.

	Parameters

	depth (int) – Maximum depth to recurse subobjects

	Return type

	dict

	
classmethod endpoint()

	Return the sandman.model.Model’s endpoint.

	Return type

	string

	
from_dict(dictionary)

	Set a set of attributes which correspond to the
sandman.model.Model’s columns.

	Parameters

	dictionary (dict) – A dictionary of attributes to set on the
instance whose keys are the column names of
the sandman.model.Model’s underlying database table.

	
links()

	Return a list of links for endpoints related to the resource.

	Return type

	list

	
classmethod meta()

	Return a dictionary containing meta-information about the given
resource.

	
classmethod primary_key()

	Return the name of the table’s primary key

	Return type

	string

	
replace(dictionary)

	Set all attributes which correspond to the
sandman.model.Model’s columns to the values in dictionary,
inserting None if an attribute’s value is not specified.

	Parameters

	dictionary (dict) – A dictionary of attributes to set on the
instance whose keys are the column names of the
sandman.model.Model’s underlying database table.

	
resource_uri()

	Return the URI at which the resource can be found.

	Return type

	string

sandman Module

Sandman REST API creator for Flask and SQLAlchemy

	
sandman.sandman.attribute_response(resource, name, value)

	Return a response for the resource of the appropriate content type.

	Parameters

	resource (sandman.model.Model) – resource to be returned in request

	Return type

	flask.Response

	
sandman.sandman.collection_response(cls, resources, start=None, stop=None)

	Return a response for the resources of the appropriate content type.

	Parameters

	resources – resources to be returned in request

	Return type

	flask.Response

	
sandman.sandman.delete_resource(collection, key)

	Return the appropriate Response for deleting an existing resource in
collection.

	Parameters

	
	collection (string) – a sandman.model.Model endpoint

	key (string) – the primary key for the sandman.model.Model

	Return type

	flask.Response

	
sandman.sandman.endpoint_class(collection)

	Return the sandman.model.Model associated with the endpoint
collection.

	Parameters

	collection (string) – a sandman.model.Model endpoint

	Return type

	sandman.model.Model

	
sandman.sandman.get_collection(*args, **kwargs)

	Return the appropriate Response for retrieving a collection of
resources.

	Parameters

	
	collection (string) – a sandman.model.Model endpoint

	key (string) – the primary key for the sandman.model.Model

	Return type

	flask.Response

	
sandman.sandman.get_meta(*args, **kwargs)

	Return the meta-description of a given resource.

	Parameters

	collection – The collection to get meta-info for

	
sandman.sandman.get_resource(*args, **kwargs)

	Return the appropriate Response for retrieving a single resource.

	Parameters

	
	collection (string) – a sandman.model.Model endpoint

	key (string) – the primary key for the sandman.model.Model

	Return type

	flask.Response

	
sandman.sandman.get_resource_attribute(*args, **kwargs)

	Return the appropriate Response for retrieving an attribute of
a single resource.

	Parameters

	
	collection (string) – a sandman.model.Model endpoint

	key (string) – the primary key for the sandman.model.Model

	Return type

	flask.Response

	
sandman.sandman.get_resource_data(incoming_request)

	Return the data from the incoming request based on the
Content-type.

	
sandman.sandman.handle_exception(error)

	Return a response with the appropriate status code, message, and content
type when an InvalidAPIUsage exception is raised.

	
sandman.sandman.index(*args, **kwargs)

	Return information about each type of resource and how it can be
accessed.

	
sandman.sandman.no_content_response(*args, **kwargs)

	Return the appropriate Response with status code 204, signaling a
completed action which does not require data in the response body

	Return type

	flask.Response

	
sandman.sandman.patch_resource(collection, key)

	“Upsert” a resource identified by the given key and return the
appropriate Response.

If no resource currently exists at /<collection>/<key>, create it
with key as its primary key and return a
resource_created_response().

If a resource does exist at /<collection>/<key>, update it with
the data sent in the request and return a no_content_response().

Note: HTTP PATCH (and, thus, patch_resource()) is idempotent

	Parameters

	
	collection (string) – a sandman.model.Model endpoint

	key (string) – the primary key for the sandman.model.Model

	Return type

	flask.Response

	
sandman.sandman.post_resource(collection)

	Return the appropriate Response based on adding a new resource to
collection.

	Parameters

	collection (string) – a sandman.model.Model endpoint

	Return type

	flask.Response

	
sandman.sandman.put_resource(collection, key)

	Replace the resource identified by the given key and return the
appropriate response.

	Parameters

	collection (string) – a sandman.model.Model endpoint

	Return type

	flask.Response

	
sandman.sandman.resource_created_response(resource)

	Return HTTP response with status code 201, signaling a created
resource

	Parameters

	resource (sandman.model.Model) – resource created as a result of current request

	Return type

	flask.Response

	
sandman.sandman.resource_response(resource, depth=0)

	Return a response for the resource of the appropriate content type.

	Parameters

	resource (sandman.model.Model) – resource to be returned in request

	Return type

	flask.Response

	
sandman.sandman.retrieve_collection(collection, query_arguments=None)

	Return the resources in collection, possibly filtered by a series of
values to use in a ‘where’ clause search.

	Parameters

	
	collection (string) – a sandman.model.Model endpoint

	query_arguments (dict) – a list of filter query arguments

	Return type

	class:sandman.model.Model

	
sandman.sandman.retrieve_resource(collection, key)

	Return the resource in collection identified by key key.

	Parameters

	
	collection (string) – a sandman.model.Model endpoint

	key (string) – primary key of resource

	Return type

	class:sandman.model.Model

	
sandman.sandman.update_resource(resource, incoming_request)

	Replace the contents of a resource with data and return an appropriate
Response.

	Parameters

	
	resource – sandman.model.Model to be updated

	data – New values for the fields in resource

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sandman	

 	
 	
 sandman.exception	

 	
 	
 sandman.model	

 	
 	
 sandman.model.models	

 	
 	
 sandman.sandman	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

_

 	
 	__endpoint__ (sandman.model.models.Model attribute)

 	__methods__ (sandman.model.models.Model attribute)

 	__table__ (sandman.model.models.Model attribute)

 	
 	__tablename__ (sandman.model.models.Model attribute)

 	_default_view (sandman.model.models.AdminModelViewWithPK attribute)

 	_urls (sandman.model.models.AdminModelViewWithPK attribute)

A

 	
 	abort() (sandman.exception.InvalidAPIUsage method)

 	action_view() (sandman.model.models.AdminModelViewWithPK method)

 	activate() (in module sandman.model)

 	
 	AdminModelViewWithPK (class in sandman.model.models)

 	ajax_lookup() (sandman.model.models.AdminModelViewWithPK method)

 	as_dict() (sandman.model.models.Model method)

 	attribute_response() (in module sandman.sandman)

C

 	
 	collection_response() (in module sandman.sandman)

 	
 	column_display_pk (sandman.model.models.AdminModelViewWithPK attribute)

 	create_view() (sandman.model.models.AdminModelViewWithPK method)

D

 	
 	delete_resource() (in module sandman.sandman)

 	
 	delete_view() (sandman.model.models.AdminModelViewWithPK method)

E

 	
 	edit_view() (sandman.model.models.AdminModelViewWithPK method)

 	
 	endpoint() (sandman.model.models.Model class method)

 	endpoint_class() (in module sandman.sandman)

F

 	
 	from_dict() (sandman.model.models.Model method)

G

 	
 	get_collection() (in module sandman.sandman)

 	get_meta() (in module sandman.sandman)

 	
 	get_resource() (in module sandman.sandman)

 	get_resource_attribute() (in module sandman.sandman)

 	get_resource_data() (in module sandman.sandman)

H

 	
 	handle_exception() (in module sandman.sandman)

I

 	
 	index() (in module sandman.sandman)

 	
 	index_view() (sandman.model.models.AdminModelViewWithPK method)

 	InvalidAPIUsage

L

 	
 	links() (sandman.model.models.Model method)

M

 	
 	meta() (sandman.model.models.Model class method)

 	
 	Model (class in sandman.model.models)

N

 	
 	no_content_response() (in module sandman.sandman)

P

 	
 	patch_resource() (in module sandman.sandman)

 	post_resource() (in module sandman.sandman)

 	
 	primary_key() (sandman.model.models.Model class method)

 	put_resource() (in module sandman.sandman)

R

 	
 	register() (in module sandman.model)

 	replace() (sandman.model.models.Model method)

 	resource_created_response() (in module sandman.sandman)

 	
 	resource_response() (in module sandman.sandman)

 	resource_uri() (sandman.model.models.Model method)

 	retrieve_collection() (in module sandman.sandman)

 	retrieve_resource() (in module sandman.sandman)

S

 	
 	sandman.exception (module)

 	sandman.model (module)

 	
 	sandman.model.models (module)

 	sandman.sandman (module)

T

 	
 	to_dict() (sandman.exception.InvalidAPIUsage method)

U

 	
 	update_resource() (in module sandman.sandman)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/admin_tracks.jpg
© 080 /Erac-admin x =
& - C | [localhost:5000/admintrackview/ %) @09 B =

X, Dashbourd - Apo\ ¥ System Dashboare & RTataglance f Feedaurner - ping @ Optimization engi ([BITTS / Analystvor [} Designing a REST » @l Other Bookmarks

Admin Home Album Playlist Artist ~Track MediaType Genre

List(3503) Create With selected~

Name Composer Milliseconds ~ Bytes Unitprice Genre Album Mediatype

For Those About To Rock (We Angus Young, Malcolm Young, Brian Johnson 343719 11170334 0.99 1 1 1
Salute You)

Balls to the Wall 342562 5510424
Fast As a Shark F. Baltes, S. Kaufman, U. Dirkscneider & W. Hoffman 230618 3990994

Restless and Wild F. Baltes, R.A. Smith-Diesel, S. Kaufman, U. 252051 4331779
Dirkscneider & W. Hoffman

1]

Princess of the Dawn Deaffy & R.A. Smith-Diesel 375418 6290521

(o]

Put The Finger On You Angus Young, Malcolm Young, Brian Johnson 205662 6713451

Let's Get It Up Angus Young, Malcolm Young, Brian Johnson 233926 7636561

=]
o

Inject The Venom Angus Young, Malcolm Young, Brian Johnson 210834 6852860

Snowballed Angus Young, Malcolm Young, Brian Johnson 203102 6599424

O 0 o

Evil Walks Angus Young, Malcolm Young, Brian Johnson 263497 8611245

C.OD. Angus Young, Malcolm Young, Brian Johnson 199836 6566314

(o]

Breaking The Rules Angus Young, Malcolm Young, Brian Johnson 263288 8596840

Night Of The Long Knives Angus Young, Malcolm Young, Brian Johnson 205688 6706347

0o

Spellbound Angus Young, Malcolm Young, Brian Johnson 270863 8817038

Go Down AC/DC 331180 10847611

_images/admin_tracks_improved.jpg
© 080 /Erac-admin x =
& - C | [localhost:5000/admintrackview/ %) e @O B =

X, Dashbourd - Apor. ¥ System Dashboare o RT ataglance f Feedaurner - ping - Optimization engin [8ITTS / Anaystwor [Designing a RESTH » @l Other Bookmarks

Admin Home Album Playlist Artist ~Track MediaType Genre

List(3503) Create With selected~

o Name Composer Milliseconds ~ Bytes Unitprice Album Mediatype Genre

For Those About To Rock Angus Young, Malcolm Young, Brian 343719 11170334 0.99 For Those About To MPEG Rock
(We Salute You) Johnson RockWe Salute audio file
You

Balls to the Wall 5510424 0. Balls to the Wall

Fast As a Shark F. Baltes, S. Kaufman, U. Dirkscneider & W. 3990934 0 Restless and Wild
Hoffman

Restless and Wild F. Baltes, R.A. Smith-Diesel, S. Kaufman, U. 252051 4331779 04 Restless and Wild
Dirkscneider & W. Hoffman

Princess of the Dawn Deaffy & R.A. Smith-Diesel 6290521 0. Restless and Wild

Put The Finger On You Angus Young, Malcolm Young, Brian 6713451 0. For Those About To MPEG
Johnson Rock We Salute audio file
You

Let's Get It Up Angus Young, Malcolm Young, Brian X For Those About To MPEG
Johnson RockWe Salute audio file
You

Inject The Venom Angus Young, Malcolm Young, Brian X For Those About To MPEG
Johnson RockWe Salute audio file
You

Snowballed Angus Young, Malcolm Young, Brian 6599424 0. For Those About To MPEG
Johnson Rock We Salute audio file
You

Evil Walks Angus Young, Malcolm Young, Brian 263497 8611245 0. For Those About To MPEG
Johnson Rock We Salute audio file

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to sandman’s documentation!

 		
 Installation

 		
 Using Sandman

 		
 The Simplest Application

 		
 Supported Databases

 		
 Beyond sandmanctl

 		
 A Quick Guide to REST APIs

 		
 Creating Models

 		
 Hooking up Models

 		
 Providing a custom endpoint

 		
 Restricting allowable methods on a resource

 		
 Performing custom validation on a resource

 		
 Configuring a model’s behavior in the admin interface

 		
 Model Endpoints

 		
 The root endpoint

 		
 The /meta endpoint

 		
 Automatic Introspection

 		
 Running sandman alongside another app

 		
 Using existing declarative models

 		
 The sandman Admin Interface

 		
 Activating the sandman Admin Interface

 		
 Getting Richer Information for Related Objects

 		
 Authentication

 		
 Enabling Authentication

 		
 get_password

 		
 before_request

 		
 Token-based Authentication

 		
 sandman API

 		
 exception Module

 		
 model Module

 		
 sandman Module

_static/up.png

_static/up-pressed.png

